第2卷 第4期 1982年7月 光 学 労 报 ACTA OPTICA SINICA

Vol. 2, No. 4 July 1982

离子交换玻璃波导折射率分布的确定

任秉复金锋徐迈

(中国科学院长春物理所)

提 要

本文提出了由模折射率确定波导表面折射率的新方法,简化了 White 提出的公式^[1],且可适用于任意折 射率分布的平面光波导,具有普遍意义。分析结果表明,理论计算与实验测量相符合。

一、引言

近几年,关于离子交换玻璃波导的研究工作比较活跃^[2~5]。由于其制作工艺简单,造价低廉,可用来制作具有应用价值的各种无源光波导器件^[7,8],所以受到人们的重视。

若用离子交换玻璃波导制作实用化光波导器件,则必须研究它的传播特性,这就要了解 其折射率分布。为此,在Ko玻璃衬底上利用简单的离子交换工艺研制出平面光波导以及 利用其模折射率的测量值确定波导折射率为二次多项式分布。本文还提出了由模折射率确 定波导表面折射率的两种方法,简化了由White等人提出的计算公式^[13],推得了关于二次多 项式折射率分布的模方程,分析了模式色散和截止特性,并给出制作单模和多模波导的工艺 条件。

二、波导制备和模折射率的测量

为了获得低损耗光波导,选择 K, 玻璃为衬底材料。将衬底表面进行精细抛光和严格 清洗后浸入 270~300°C 的硝酸银溶液,在恒温和无搅拌情形下进行若干小时离子交换。由 于银离子替换钠离子,故在衬底表层中形成渐变折射率光波导。

在不同扩散条件下研制出若干离子交换光波导。对于其中的 三个波导样品,在 6328Å 激光波长下利用对称棱镜耦合器测得了 TE模的模折射率^[9,10],如表1所示。其中,3号样品的 m 线照片 示于图1。由此可见,相邻两条 m 线间距随着模阶数 m 的增加, 对若干低阶模由大变小,对高阶模几乎相等。

根据文献[2]和[3]报道,在扩散过程中对硝酸银溶液搅拌和 不搅拌,分别形成波导折射率的误差余函数和高斯函数分布。前 者可由指数分布来近似,也可粗略地采用线性近似,其相邻两条m 线间距随模阶数的增加由大变小;后者可由抛物线分布来近似,其 相邻两条m线间距随模阶数的增加几乎相等。这两种折射率分布

图 1 3 号波导样品 的m线照片 Fig. 1 TE mode m-lines of No. 3 waveguide sample

收稿日期: 1981 年 8 月 4 日

	波 导 样 品			
模折射率	No. 1	No. 2	No. 3	
No	1.5541	1.5685	1.5819	
Ni	1,5220	1.5516	1.5715	
$\overline{N_2}$		1.5345	1,5635	
N_3		1,5181	1.5565	
N_4			1.5498	
N_{5}			1.5431	
N_6			1.5361	
N7			1.5294	
${N}_8$			1.5223	
N_9			1.5154	

表1 TE 模的横折射率测量值 N_m (6328Å)

Table 1 Measurement values of TE mode indices at 6328Å

是在扩散系数与杂质浓度无关的条件下形成的。我们的波导样品不属于这两种折射率分布, 而兼有线性分布和抛物线分布的 m 线特征,所以其折射率分布可由二次多项式分布来近似 (见文献[4])。这是因为在扩散杂质浓度较大的情形下扩散系数明显地依赖于杂质浓度所 致。

三、波导表面折射率的确定

为了准确地确定波导折射率分布,必须知道波导表面折射率。确定表面折射率有几种 方法,在这一节提出由模折射率确定表面折射率的两种新方法。

对于非对称渐变折射率波导,其 TE 模的模方程为"111

$$k \int_{0}^{x_{m}} \left[n^{2}(x) - N_{m}^{2} \right]^{1/2} dx = m\pi + \frac{\pi}{4} + tg^{-1} \left(\frac{N_{m}^{2} - 1}{n_{s} - N_{m}^{2}} \right)^{1/2}, \tag{1}$$

式中,波导折射率分布为

$$n^{2}(x) = \begin{cases} n_{b} + (n_{s}^{2} - n_{b}^{2})f(x) & (x \ge 0), \\ 1 \quad (\stackrel{\frown}{\subseteq} \stackrel{\frown}{\leftarrow}) & (x < 0)_{\circ} \end{cases}$$
(2)

在(1)和(2)式中, m 为模阶数, 取从零开始的正整数; x 为离波导表面的座标; x_m 为m阶模 光线在衬底中的拐点, 又称光学隧道点; N_m 为m阶模的模折射率; n_s 和 n_b 分别为波导表面 折射率和衬底折射率; f(x) 为归一化折射率分布函数, 在波导表面取 1, 随 x 的增加单调地 减至零; $k = 2\pi/\lambda$ 和 λ 分别为真空中的波数和波长。

由(1)式可知,模折射率在 $n_s > N_m > n_b$ 范围内取有限个分立值,但在模式数量较多的情形下可将 N_m 近似视作m的连续函数。这时,对 $N_m = n_s$ 由(1)式容易推得m = -3/4,即 $N_m = -3/4 = n_s$ 。因此,对模式数量较多的波导,若由棱镜耦合器测得所有模折射率, 画出 $N \sim m$ 曲线,则把这一曲线外推到m = -3/4所得到的模折射率就是波导表面折射率。 n_s 可

由N对m的差商表示:

$$n_{s} = N_{0} - 0.75F_{10}^{(1)} + 0.75 \times 1.75F_{20}^{(2)} - 0.75 \times 1.75 \times 2.75F_{30}^{(3)} + \cdots,$$
(3)
式中,各阶差商为

一阶差商: $F_{m+1,m}^{(1)} = N_{m+1} - N_m$,

二阶差商: $F_{m+2,m}^{(2)} = [F_{m+2,m+1}^{(1)} - F_{m+1,m}^{(1)}]/2$,

三阶差商: $F_{m+3,m}^{(3)} = [F_{m+3,m+1}^{(2)} - F_{m+2,m}^{(2)}]/3$ 。

对 3 号波导样品,将其模折射率测量值代入 (3) 式,得到 $n_s = 1.5924$,且图 2 为 $N \sim m$ 曲线。

确定波导表面折射率,除了上述简单的外推法以外还有迭代法。设

$$M_{m} = \frac{4m+1}{8} + \frac{1}{2\pi} \operatorname{tg}^{-1} \left(\frac{N_{m}^{2}-1}{n_{s}^{2}-N_{m}^{2}} \right)^{1/2}, \quad (4)$$

则在模式数量较多的情况下,可将 N 看作 M 的连续 函数。根据(1)式,对 $N = n_s$,有 M = 0。因此,将 $N \sim M$ 曲线外推到 M = 0 所得到的模折射率就是波导 表面折射率,即 $N|_{M=0} = n_s$ 。 n_s 可由 N 对 M 的差商 表示:

 $n_{s} = N_{0} - M_{0}G_{10}^{(1)} + M_{0}M_{1}G_{20}^{(2)} - M_{0}M_{1}M_{2}G_{30}^{(3)} + \cdots,$ (5)

式中,各阶差商为

二阶差商. $G_{m+2,m}^{(2)} = [G_{m+2,m+1}^{(1)} - G_{m+1,m}^{(1)}]/(M_{m+2} - M_m),$

一阶差商: $G_{m+1,m}^{(1)} = (N_{m+1} - N_m / M_{m+1} - M_m),$

三阶差商: $G_{m+3,m}^{(3)} = [G_{m+3,m+1}^{(2)} - G_{m+2,m}^{(2)}]/(M_{m+8} - M_m)_{o}$

对3号波导样品,将其模折射率测量值代入(7)式,经迭代运算得到 n_s=1.5926,且 N~M 曲线在图4中用虚线表示。

由上述两种方法确定的波导表面折射率相互符合得很好。此外,测量和分析表明,在不同扩散条件下制得的波导样品具有接近相同的表面折射率。这是因为在离子交换过程中银 离子浓度近似不变的情形下,可把由衬底表面银离子浓度所决定的波导表面折射率视作与 扩散温度和时间无关的常数。

四、波导折射率分布的确定

关于由模折射率确定波导折射率分布, White 等人在文献[8]中已作了论述。在这一节, 对他们的工作做一些简化和补充, 并确定 3 号波导样品的折射率分布。

由(4)式将模方程(1)改写成

$$\int_{0}^{y_{m}} \left[n^{2}(y) - N_{m}^{2} \right]^{1/2} dy = M_{m},$$
(6)

式中, $y = x/\lambda$, $y_m = x_m/\lambda$, 左式称为 WKB 积分, 并记作 R_m 。对于给定模式, 有^[11] $n(y_m) = N_m$ 。

(7)

因此,对于模式数量较多的波导,将 N_m 的测量值代入(6)式求得 y_m,便可以确定出波导的折 射率分布。

将 n²(y)~y 曲线用多个线段近似,设

$$n^{2}(y) = N_{\nu}^{2} + \frac{N_{\nu-1}^{2} - N_{\nu}}{y_{\nu} - y_{\nu-1}} (y_{\nu} - y) \quad (y_{\nu-1} < y < y_{\nu}),$$
(8)

式中, $\nu = 0, 1, 2, \dots, m$, 且规定 $y_{-1} = 0$ 和 $n(y_{-1}) = n_s$ 。将(8)式代入(6)式的左式后逐段积分,得到

$$R_m \approx \sum_{\nu=0}^{m-1} I_{\nu} + I_m, \tag{9}$$

$$I_{\nu} = \int_{y_{\nu-1}}^{y_{\nu}} \left[(N_{\nu}^2 - N_m^2) = \frac{N_{\nu-1}^2 - N_{\nu}^2}{y_{\nu} - y_{\nu-1}} (y_{\nu} - y) \right]^{1/2} dy = \frac{2}{3} \frac{y_{\nu} - y_{\nu-1}}{N_{\nu-1}^2 - N_{\nu}} \left[(N_{\nu-1}^2 - N_m^2)^{3/2} - (N_{\nu}^2 - N_m^2)^{3/2} \right], \tag{10}$$

$$I_{m} = \int_{y_{m-1}}^{y_{m+1}} \left[\frac{N_{m-1}^{2} - N_{m}^{2}}{y_{m} - y_{m-1}} (y_{m} - y) \right]^{1/2} dy = \frac{2}{3} \frac{y_{m} - y_{m-1}}{N_{m-1}^{2} - N_{m}^{2}} (N_{m-1}^{2} - N_{m}^{2})^{3/2}$$
(11)

由(6)式和(9)~(11)式不难推得

$$y_{m} = y_{m-1} + \frac{3}{2} \left(N_{m-1}^{2} - N_{m}^{2} \right)^{-1/2} \left(M_{m} - \sum_{\nu=0}^{m-1} I_{\nu} \right), \tag{12}$$

$$y_{0} = \frac{3}{2} (n_{s}^{2} - N_{0}^{2})^{-1/2} M_{00}$$
(13)

在(12)和(13)式中,均含有待定参数 n_{so} 。适当选择 n_{s} ,使由相应一组 g_m 所给定的 $n(y) \sim y$ 曲线光滑,就可以给出波导折射率分布。(12)和(13)式与文献[1]中的相应表达式相比,不 仅简单,而且包含了被后者所忽略的光线在波导表面遭受的全反射相移项,因而更加精确。

对 3 号波导样品,利用本文和文献[1] 中的 ym 表达式分别作了数值计算,结果列于表 2 中,与此相对应的波导表面折射率为 ns=1.5930。由表 2 可见,上述两种 ym 表达式得到几 乎一致的结果。并且,本节用 n(y)~y 曲线的光滑法得出的 ns 与(4)式和(7)式得出的 ns 接 近一致。至此,本文涉及到确定波导表面折射率的三种方法,它们给出相当一致的结果,其 中(4)式提供了最简单而实用的方法。

表 2 3 号波导样品的 y_m 值 $(n_s=1.5930)$ Table 2 Mode depths y_m of No. 3 waveguide sample

方 法	y_0	y_1	¥2	y_3	y_4	Ŷ5	y_6	y_7	<i>y</i> 8	<i>Y</i> 9
本文	2.81	4.57	6.57	8.06	9.26	10.33	11.09	12,10	12,63	13. 56
文献[8]	2.81	4.55	6.58	8.06	9.27	10,33	11.09	12.10	12.63	13.56

根据第二节的初步讨论,对我们的波导样品,设其折射率为二次多项式分布

$$n^{2}(x) = n_{b}^{2} + (n_{s}^{2} - n_{b}^{2}) \left[1 - \left(\frac{x}{d}\right) - \alpha \left(\frac{x}{d}\right)^{2} \right],$$
(14)

式中, α 为二次项系数; d为有效扩散深度, 它与有效扩散系数 D_e 和扩散时间 t 的关系为 $d=2(D_e t)^{1/2}$ 。当 $n_s \approx n_b$ 时, 由(14)式得到

$$n(y) \approx n_{s} - (n_{s} - n_{b}) \left[\left(\frac{\lambda}{d} \right) y + \alpha \left(\frac{\lambda}{d} \right)^{2} y^{2} \right]_{o}$$
(15)

对 8 号波导样品,利用(15)式拟合由表 2 所确定的波导折射率分布,其拟合参数为 $\alpha = 0.66$ 和 $d = 13.3 \mu m$,在拟合过程中使用了 $n_s = 1.5930$ 和 $n_b = 1.5146$ 。由表 2 确定的折射 率分 布(折线)和由(17)式及其有关拟合参数给出的折射率分布(实线)均示于图 3,折线和实线 基本相符。

五、模式色散和截止特性

$$b_{m} = (N_{m}^{2} - n_{b}^{2}) / (n_{s}^{2} - n_{b}^{2}), \qquad (16)$$

$$v = (n_s^2 - n_b^2)^{1/2} k d, (17)$$

则对于波导折射率的二次多项式分布,其 R_m和 M_m 可表作

$$R_{m} = \frac{v}{8\pi\alpha} \left\{ \frac{1 + 4\alpha(1 - b_{m})}{2\alpha^{1/2}} \left[\frac{\pi}{2} - \sin^{-1} \frac{1}{\sqrt{1 + 4\alpha(1 - b_{m})}} \right] - \sqrt{1 - b_{m}} \right\},$$
(18)

$$M_{m} = \frac{4m+1}{8} + \frac{1}{2\pi} \operatorname{tg}^{-1} \left(\frac{b_{m} + E}{1 - b_{m}} \right)^{1/2}, \tag{19}$$

式中,对 TE 模 $E = (n_b^2 - 1)/(n_s^2 - n_b^2)$ 。对于 3 号波导样品,利用模折射率的测量值和折射率分布的拟合参数,分别计算出所有模式的 R_m 和 M_m 值,并把 $N_m \sim R_m$ 和 $N_m \sim M_m$ 曲线分别用实线和虚线示于图 4。这两条曲线,除了在两个高阶模处略有偏差以外,基本上重合。这就说明,我们的波导样品确实具有二次多项式折射率分布,以致于模方程 $R_m = M_m$ 处处成立。

利用(18)和(19)式使 R_m等于 M_m,得到 TE 模的归一化模方程

$$\frac{V}{4\alpha} \left\{ \frac{1 + 4\alpha(1 - b_m)}{2\alpha^{1/2}} \left[\frac{\pi}{2} - \sin^{-1} \frac{1}{\sqrt{1 + 4\alpha(1 - b_m)}} - \sqrt{1 - b_m} \right] \\
= \left(m + \frac{1}{4} \right) \pi + tg^{-1} \left(\frac{b_m + E}{1 - b_m} \right)^{1/2} \circ$$
(20)

由(20)式计算出头 11 个 TE 模的色散曲线(即 b_m~V 曲线),并示于图 5。对于表 1 所列举的三个波导样品,分别计算出 b_m和 V,并用"⊙"、"●"和"〇"示于图 5,这些工作点基本都落在 b_m~V 特征曲线上。这进一步证明,每个波导样品均具有二次多项式折射率分布。

图 4 3 号波导样品的 $N_m \sim R_m$ 和 $N_m \sim M_m$ 曲线 Fig. 4 $N_m \sim R_m$ curve (solid line) and $N_m \sim M_m$ curve (imagenary line)

图 5 二次多项式分布的 b_m~V 曲线 Fig. 5 Mode dispersion curve corresponding to second-order polynomial profile of waveguide refractive index

$$\begin{array}{l}
\begin{aligned}
\begin{aligned}
& \dot{a}(20) \, \ensuremath{\vec{x}} \ensuremath{\vec{n}} = 0(\ensuremath{\vec{n}} \ensuremath{\vec{n}} \ensuremath{\vec{n}} = 0, \ensuremath{\vec{n}} \ensuremath{\vec{n}} \ensuremath{\vec{n}} = 0, \ensuremath{\vec{n}} \ensurem$$

由(21)式计算出 V_{o} ,并利用 $V_{o} = (n_{s}^{2} - n_{b}^{2})^{1/2}kd_{o}$ 计算出对应于6328Å激光波长的截止扩散 探度 d_{o} ,一同列入表3。由(21)式可以看到,由于对确定的波导材料和扩散溶液, n_{s} 、E和 α 基本上均是常量^[43],所以对于给定波长,波导的模式数量只取决于扩散深度,从而对给定扩散温度只取决扩散时间。

$\frac{1}{2} = \frac{1}{2} = \frac{1}$						
模 阶 数 m	归一化截止扩散深度 _V 。	截止扩散深度 (6328Å) d _c (µm)	截止扩散时间 (300°C, 6328Å) t _c (h r)			
0	4.0058	0.817	0.121			
1	10.470	2.136	0.826			
2	16.934	3.455	2.160			
3	23.39 9	4.774	4.123			
4	29.863	6.093	6.716			
5	36.327	7.412	9,939			
6	42.791	8.731	13.79			
7	49.256	10,05	18.29			
8	55.720	11.37	23.38			
9	62.184	12.69	29.12			
10	68.648	14.01	35.49			

表 3 V_o 、 d_o (6328Å)和 t_o (300°C, 6328Å) Table 3 Value of V_c , d_o (6328Å) and t_o (300°C, 6328Å)

3 号波导样品是在 300°C 温度下扩散 32 小时而形成的,其扩散深度为 $d=13.3 \mu$ m。因此,银离子在 300°C K₉ 玻璃衬底中的有效扩散 系 数 为 $D_e = d^2/4t = 1.38 \times 10^{-8} \text{ cm}^2/\text{hr}$ 。利用这一扩散系数和表 3 中的截止扩散深度 d_c ,计算出对应于 $\lambda = 6328$ Å和 300°C 扩散温度的截止扩散时间 $t_o = d_c/4D_e$,也记入表 3。图 5 和表 3 提供了利用 K₉ 玻璃制作单模和多模波导的工艺条件,且可以用来控制模折射率和模式数量。

综上所述,我们在 K。玻璃衬底上利用离子交换工艺研制出平面光波导,并确定其折射 率为二次多项式分布,提出了确定波导表面折射率的新方法,取得了理论计算与实验测量相 一致的结果。

参考文献

- [1] J. W. White, P. F. Heidrich; Appl. Opt., 1976, 15, No. 1 (Jan), 151,
- [2] T. G. Giallorenzi et al.; Appl. Opt., 1973, 12, No. 6 (Jun), 1240.
- [3] I. Savatinova, E. Nadjakov; Appl. Phys., 1975, 8, No. 3 (Nov), 245.
- [4] G. Stewart et al.; IEEE J. Q. E., 1977, QE-13, No. 4 (Apr), 192.
- [5] G. Chartier et al.; Appl. Opt., 1980, 19, No. 7 (Apr), 1092.
- [6] J. Viljanen, M. Leppihalme; J. A. P., 1980, 51, No. 7 (Jul), 3563.
- [7] M. Stockmann, H. H. Witte; Appl. Opt., 1980, 19, No. 15 (Aug), 2584.
 K. Nosu, R. Watanabe; Electron. Lett., 1980, 16, No. 15 (Jul), 608.
- [8] R. Watanabe, K. Nosu; Appl. Opt., 1980, 19, No. 21 (Nov), 3588.
- [9] P. K. Tien et al.; A. P. L., 1969, 14, No. 9 (May), 291.
- [10] R. Ulrich, R. Torge; Appl. Opt., 1973, 12, No. 12 (Dec), 2901.
- [11] 金锋,范俊清;《集成光学》上册,(国防工业出版社,1981).

The determination of refractive index-profiles of glass waveguides formed by ion exchange

REN BINGFU JIN FENG AND XU MAI (Changchun Institute of Physics, Academia Sinica)

(received 4 August 1981)

Abstract

The K₉ glass substrate made in China were dipped in the silver melts at $270 \sim 300^{\circ}$ C temperature, the Ag⁺-Na⁺ ion exchange was made under the constant temperature condition, and the planar optical waveguides of graded index profile have been fabricated. Mode indices of these waveguide samples have been measured with a symmetric prism coupler at 6328 Å laser wavelength.

In this paper, white and Heidrich's calculational formulae determing the waveguide index profile by mode indices have been reduced, and simple new methods determing the waveguide surface index by mode indices have been presented. On this basis, it is determined by mode index measurement values that the refractive index profile of K_{0} glass waveguides formed by ion exchange is

$$n(x) = -(n_{s}-n_{b})[(x/d)+\alpha(x/d)^{2}],$$

where $n_s = 1.5930$ and $n_b = 1.5146$ are refractive indices of waveguide surface and subs trate respectively, $\alpha = 0.66$ is the second-order term coefficient, d is the effective diffus ion depth, and x is the distance from waveguide surface.

For the second-order polynominal profile of optical waveguide index the mode equation and out-off equation have been derived, from which the mode dispersion and out-off properties have been analysed, and fabrication technical conditions of singlemode and multi-mode waveguides have been given.

Analytical results show that theoretical calculations are identical with experimental measuements. This paper provided necessary basic informations for fabrications of single-mode and multi-mode waveguide devices required by optical fiber communication systems with K₉ glass waveguides formed by ion exchange.